人妻夜夜爽天天爽,18禁裸体动漫美女无遮挡网站,99国产精品自在自在久久,亚洲精品无码高潮喷水在线

行業(yè)資訊
您的位置:首頁 > 信息動態(tài)  > 新聞資訊 > 行業(yè)資訊

反人臉識別技術(shù)來臨!身份欺騙成功率達99.5%!

來源:srcaunu.cn         發(fā)布時間:2020-03-20
 

多倫多大學(xué)研究人員設(shè)計新算法,可以將原本可檢測到的人臉比例從接近100%降低到0.5%。

在一些社交媒體平臺,每次你上傳照片或視頻時,它的人臉識別系統(tǒng)會試圖從這些照片和視頻中得到更多信息。比如,這些算法會提取關(guān)于你是誰、你的位置以及你認識的其他人的數(shù)據(jù),并且,這些算法在不斷改進。

現(xiàn)在,人臉識別的克星——反人臉識別問世了

多倫多大學(xué)Parham Aarabi教授和研究生Avishek Bose的團隊開發(fā)了一種算法,可以動態(tài)地破壞人臉識別系統(tǒng)。

他們的解決方案利用了一種叫做對抗訓(xùn)練(adversarial training)的深度學(xué)習(xí)技術(shù),這種技術(shù)讓兩種人工智能算法相互對抗。

現(xiàn)在,深度神經(jīng)網(wǎng)絡(luò)已經(jīng)被應(yīng)用于各種各樣問題,如自動駕駛車輛、癌癥檢測等,但是我們迫切需要更好地理解這些模型容易受到攻擊的方式。在圖像識別領(lǐng)域,在圖像中添加小的、往往不可察覺的干擾就可以欺騙一個典型的分類網(wǎng)絡(luò),使其將圖像錯誤地分類。

這種被干擾的圖像被稱為對抗樣本( adversarial examples),它們可以被用來對網(wǎng)絡(luò)進行對抗攻擊(adversarial attacks)。在制造對抗樣本方面已經(jīng)有幾種方法,它們在復(fù)雜性、計算成本和被攻擊模型所需的訪問級別等方面差異很大。

一般來說,對抗攻擊可以根據(jù)攻擊模型的訪問級別和對抗目標(biāo)進行分類。白盒攻擊white-box attacks)可以完全訪問它們正在攻擊的模型的結(jié)構(gòu)和參數(shù);黑盒攻擊black-box attacks)只能訪問被攻擊模型的輸出。

一種基線方法是快速梯度符號法(FGSM),它基于輸入圖像的梯度對分類器的損失進行攻擊。FGSM是一種白盒方法,因為它需要訪問被攻擊分類器的內(nèi)部。攻擊圖像分類的深度神經(jīng)網(wǎng)絡(luò)有幾種強烈的對抗攻擊方法,如L-BFGSacobian-based Saliency Map Attack(JSMA)、DeepFoolcarlin - wagner等。然而,這些方法都涉及到對可能的干擾空間進行復(fù)雜的優(yōu)化,這使得它們速度慢,計算成本高。

與攻擊分類模型相比,攻擊目標(biāo)檢測的pipeline要困難得多。最先進的檢測器,例如Faster R-CNN,使用不同尺度和位置的對象方案,然后對它們進行分類;其目標(biāo)的數(shù)量比分類模型大幾個數(shù)量級。

此外,如果受到攻擊的方案只是總數(shù)的一小部分,那么仍然可以通過不同的方案子集正確地檢測出受干擾的圖像。因此,成功的攻擊需要同時欺騙所有對象方案。

在這個案例中,研究人員證明了對最先進的人臉檢測器進行快速對抗攻擊是可能的。

研究人員開發(fā)了一種隱私濾鏡,可以干擾人臉識別算法。該系統(tǒng)依賴于2AI算法:一種執(zhí)行連續(xù)的人臉檢測,另一種設(shè)計來破壞前者。

研究人員提出一種針對基于Faster R-CNN的人臉探測器的新攻擊方法。該方法通過產(chǎn)生微小的干擾(perturbation,當(dāng)將這些干擾添加到輸入的人臉圖像中時,會導(dǎo)致預(yù)訓(xùn)練過的人臉探測器失效。

為了產(chǎn)生對抗干擾,研究人員提出針對基于預(yù)訓(xùn)練Faster R-CNN人臉檢測器訓(xùn)練一個生成器。給定一個圖像,生成器將產(chǎn)生一個小的干擾,可以添加到圖像中以欺騙人臉檢測器。人臉檢測器只在未受干擾的圖像上進行脫機訓(xùn)練,因此對生成器的存在渾然不覺。

隨著時間的推移,生成器學(xué)會了產(chǎn)生干擾,這種干擾可以有效地欺騙它所訓(xùn)練的人臉探測器。生成一個對抗樣本相當(dāng)快速而且成本低,甚至比FGSM的成本更低,因為為輸入創(chuàng)建一個干擾只需要在生成器經(jīng)過充分的訓(xùn)練后進行前向傳遞( forward pass)。

兩個神經(jīng)網(wǎng)絡(luò)相互對抗,形成隱私濾鏡

研究人員設(shè)計了兩個神經(jīng)網(wǎng)絡(luò):第一個用于識別人臉,第二個用于干擾第一個神經(jīng)網(wǎng)絡(luò)的識別人臉任務(wù)。這兩個神經(jīng)網(wǎng)絡(luò)不斷地相互對抗,并相互學(xué)習(xí)。

其結(jié)果是一個類似instagram隱私濾鏡,可以應(yīng)用于照片,以保護隱私。其中的秘訣是他們的算法改變了照片中的一些特定像素,但人眼幾乎察覺不到這些變化。

干擾性的AI算法不能攻擊用于檢測人臉的神經(jīng)網(wǎng)絡(luò)正在尋找的東西。” 該項目的主要作者Bose說:例如,如果檢測網(wǎng)絡(luò)正在尋找眼角,干擾算法就會調(diào)整眼角,使得眼角的像素不那么顯眼。算法在照片中造成了非常微小的干擾,但對于檢測器來說,這些干擾足以欺騙系統(tǒng)。

研究人員在300-W人臉數(shù)據(jù)集上測試了他們的系統(tǒng),該數(shù)據(jù)集包含多種族,不同照明條件和背景環(huán)境的超過600張人臉照片,是一個業(yè)界的標(biāo)準(zhǔn)庫。結(jié)果表明,他們的系統(tǒng)可以將原本可檢測到的人臉比例從接近100%降低到0.5。

Bose說:這里的關(guān)鍵是訓(xùn)練兩個神經(jīng)網(wǎng)絡(luò)相互對抗——一個創(chuàng)建越來越強大的面部檢測系統(tǒng),另一個創(chuàng)建更強大的工具來禁用面部檢測。該團隊的研究將于即將舉行的2018IEEE國際多媒體信號處理研討會上發(fā)表和展示。

 

除了禁用面部識別之外,這項新技術(shù)還會干擾基于圖像的搜索、特征識別、情感和種族判斷以及其他可以自動提取面部屬性。

接下來,該團隊希望通過app或網(wǎng)站公開這個隱私濾鏡。

十年前,這些算法必須要由人類定義,但現(xiàn)在是神經(jīng)網(wǎng)絡(luò)自己學(xué)習(xí)——你不需要向它們提供任何東西,除了訓(xùn)練數(shù)據(jù),”Aarabi說。最終,它們可以做出一些非常了不起的事情,有巨大的潛力。